Theory of optimal balance predicts and explains the amplitude and decay time of synaptic inhibition
نویسندگان
چکیده
Synaptic inhibition counterbalances excitation, but it is not known what constitutes optimal inhibition. We previously proposed that perfect balance is achieved when the peak of an excitatory postsynaptic potential (EPSP) is exactly at spike threshold, so that the slightest variation in excitation determines whether a spike is generated. Using simulations, we show that the optimal inhibitory postsynaptic conductance (IPSG) increases in amplitude and decay rate as synaptic excitation increases from 1 to 800 Hz. As further proposed by theory, we show that optimal IPSG parameters can be learned through anti-Hebbian rules. Finally, we compare our theoretical optima to published experimental data from 21 types of neurons, in which rates of synaptic excitation and IPSG decay times vary by factors of about 100 (5-600 Hz) and 50 (1-50 ms), respectively. From an infinite range of possible decay times, theory predicted experimental decay times within less than a factor of 2. Across a distinct set of 15 types of neuron recorded in vivo, theory predicted the amplitude of synaptic inhibition within a factor of 1.7. Thus, the theory can explain biophysical quantities from first principles.
منابع مشابه
Strongly stable multi-time stepping method with the option of controlling amplitude decay in responses
Recently, multi-time stepping methods have become very popular among scientist due to their high stability in problems with critical conditions. One important shortcoming of these methods backs to their high amount of uncontrolled amplitude decay. This study proposes a new multi-time stepping method in which the time step is split into two sub-steps. The first sub-step is solved using the well-...
متن کاملCombination of Colour Favoured and Colour
In this research we described the effective Hamiltonian theory and applied this theory to the calculation of current-current (Q1,2) and QCD penguin (Q3,…,6) c quark decay rates. We calculated the decay rates of semileptonic and hadronic of charm quark in the effective Hamiltonian theory. We investigated the decay rates of D meson decays according to Spectator Quark Model (SQM) for the calculati...
متن کاملAnalysis of Aeolian Vibrations of Transmission Line Conductors and Extraction of Damper Optimal Placement with a Comprehensive Methodology
Energy balance method is an effective and simple method which is used in the amplitude calculation of Aeolian vibration in transmission lines with Stockbridge damper. However, the accuracy of the results obtained by this method, heavily depends on the assumed mode shapes of the conductor vibration. In this study, by considering an appropriate model for the conductor vibration, a comprehensive m...
متن کاملEffects of Ketamine on Neuronal Spontaneous Excitatory Postsynaptic Currents and Miniature Excitatory Postsynaptic Currents in the Somatosensory Cortex of Rats
Background: Ketamine is a commonly used intravenous anesthetic which produces dissociation anesthesia, analgesia, and amnesia. The mechanism of ketamine-induced synaptic inhibition in high-level cortical areas is still unknown. We aimed to elucidate the effects of different concentrations of ketamine on the glutamatergic synaptic transmission of the neurons in the primary somatosensory cortex b...
متن کاملDevelopmental Effects of Melatonin on Synaptic Plasticity of Hippocampal CA1 Neurons in Visual Deprived Rats
Background & Aims: Change in visual experience impairs circadian rhythms. In this study, The effects of visual deprivation during critical period of brain development and melatonin intake on synaptic plasticity of hippocampal CA1 neurons were evaluated. Methods: This experimental study was done on male rats kept in standard 12 hour light/dark condition (L...
متن کامل